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Abstract

The issue of whether extensional viscosity is a concept that causes more confusion
than enlightenment is addressed. This author’s view is that misuse of the concept
certainly has caused much confusion and, although it is in principle a simple and
straightforward idea, it continues to be misused. What is straightforward is the
formal definition of extensional viscosity, for steady uniform extensional flow. What
gives rise to confusion is the careless use of measurements in flows which are not
both steady and spatially uniform.
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1 Introduction

The first use of extensional viscosity, under a different name, is that by Trouton
[1]. In his 1906 paper he coined the term “coefficient of viscous traction” and
his intention was to obtain the viscosity of an incompressible Newtonian fluid.
The relationship between the (shear) viscosity, η, and the coefficient of viscous
traction, ηT ,

ηT = 3η , (1)

was obtained by resolving stresses in appropriate directions, in effect using the
tensorial nature of stress and rate of strain. This might be seen as an appli-
cation of the principle of material objectivity (which was enunciated nearly

? Developed from part of the talk delivered at the INNFM conference, Lake Vyrnwy,
Wales in March 2005 with the title “Ninety-nine years of extensional flow”.

Email address: Chris.Petrie@Newcastle.ac.uk (Christopher J.S. Petrie).

Preprint submitted to Elsevier Science 16 January 2006



50 years later). An historical account of some aspects of extensional flows,
including a fuller account of Trouton’s work, is given in a companion paper
[2].

In this paper we review issues arising from the practical problem that viscosity
(in shear or extension) is a material property defined for steady, spatially
uniform flows while for practical applications where extensional viscosity is
important, flows are never steady and spatially uniform. This has lead to use
of the concept of a “transient extensional viscosity” and use of a variety of
approximations and averaging techniques.

To anticipate the main conclusion of this paper, we remark here that the use
of the term “transient extensional viscosity” or its equivalent is fraught with
danger and has led to confusion on a number of occasions. Unless the term
is used in a very clear and restricted way, it should not be used at all. The
reasons for this conclusion are set out below.

Another issue concerns the connection between extensional and shear flow
properties. The “Trouton ratio”, defined as ηT /η, is 3 for a Newtonian fluid
and there are corresponding ratios for biaxial extensional flows (Section 3).
For viscoelastic fluids this result will generally hold in the limiting case of
very small rates of strain, but otherwise we can say nothing without a specific
constitutive equation.

2 Uniaxial extension

We consider extensional flows which we define here as having a diagonal rate
of strain tensor, D, and a diagonal stress tensor, σ. A formal definition of
“tensile viscosity” is given in the 1984 report of Society of Rheology’s second
committee on rheological nomenclature [3] reprinted with revisions ten years
later [4]. “Tensile viscosity” is the quantity also referred to as “elonga-
tional viscosity” and “uniaxial extensional viscosity” and is the same as
Trouton’s “coefficient of viscous traction”. The phrase “extensional viscosity”,
without further qualification, might refer to any or all of the viscosity functions
that could be defined for a steady uniform extensional flow. We shall return
briefly to the topic of biaxial and general extensional flows later (Section 3).

The formal definition of “tensile viscosity” is as follows: A material is subjected
to homogeneous simple extension, i.e. to a flow which is spatially uniform, with
constant rate of strain, D11 = ε̇, in the x1-direction and D22 = D33 = −1

2
ε̇ in

every direction perpendicular to the x1-axis. The ratio of “net tensile stress”,
σE ≡ σ11 − σ22, to rate of strain is monitored as a function of time and the
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“tensile viscosity”, ηT is defined as

ηT (ε̇) = lim
t→∞

[
σE(t, ε̇)

ε̇

]
. (2)

The notation ηT is used widely in honour of Trouton, instead of ηE which is
used in the official definition [3], and the tensile or elongational viscosity may
be called the “Trouton viscosity”.

This definition, of course, says nothing about methods of, or even the feasibility
of, experimental realization. It requires that, for steady extension, the tensile
stress tends to a constant value (dependent only on the rate of strain, ε̇). In
practice it also requires that the stress settles down to this constant value
within the time of the experiment. Hence if there is no observed steady stress
attained within the time of the experiment, there is no elongational viscosity.
This is true, in a very obvious way, if we consider an elastic solid and also for
the well-known case of an upper convected Maxwell model at rates of strain
above a critical value [36, Section 2.2].

A more important practical problem is that a simple extensional flow cannot
be realized in a way that is steady both in the Eulerian and the Lagrangean
sense (except at a point – a stagnation point). We are faced then either with

(a) experiments that are steady in the laboratory frame of reference but
in which the material experiences a changing strain rate, such as fibre
spinning, contraction flow or opposed jets,

or with

(b) experiments with a constant strain rate but changing position of the
material (except at a stagnation point), such as the tensile test (stretching
of a cylinder).

In either case, the experiment is necessarily of limited duration. For some ex-
perimental arrangements there is an obvious limitation due to the stretching
of the sample to the maximum length which can be accommodated in the
apparatus (or the laboratory). The less avoidable limitation is that of a min-
imum final sample radius and hence a maximum extensional strain, beyond
which the sample becomes irregular in shape or breaks. There is therefore a
serious question about whether steady flow can practically be achieved.

We should acknowledge here that things are not necessarily quite as bad as
we are suggesting here. It is possible that in a fibre spinning experiment the
rate of strain is (nearly) constant over a large part of the spinline. In a similar
way, it is possible that in a tensile test the cylinder remains a cylinder over
most of its length. However we cannot guarantee this a priori; the issue is one
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of the controllability of the flow to which we return briefly below (Section
7).

Of course, from a practical point of view, if steady extensional flow is rarely
obtained, the tensile viscosity is not the most useful thing to know about
the material. Rather we shall need to know something of the behaviour of
the material in transient extensional flows and in flows with deformation that
involves both extension and shearing . This will mean either that we need a
constitutive equation applicable to the material under all the relevant flow
conditions or that we need an empirical test that allows us to predict the
material behaviour for a specific application.

Finally we note that, if surface tension is significant, we need to be clear that
the “net tensile stress” σE in our definition, Eqn. (2), is the measured stress
corrected for surface tension according to

σE =
Applied force

Area
− Coefficient of surface tension

Radius
. (3)

We also need to be clear that the use of σE ≡ σ11 − σ22 is, in any case,
valid only for incompressible fluids. The normal stress difference σ11 − σ22 is
used in order to avoid any dependence on hydrostatic pressure. This matter
is discussed further elsewhere [5,6]. For simplicity, our discussion of other
extensional flows and of the various extensional viscosities that are defined in
Eqns. (6), (8), (9), (12) and (13) below (Section 3), refers to incompressible
fluids in the absence of surface tension.

3 General (biaxial) extension

As well as uniaxial extension, we may consider equibiaxial extension,

D11 = D22 = ε̇ ; D33 = −2ε̇ (4)

and planar extension,

D11 = ε̇ ; D22 = 0 ; D33 = −ε̇ . (5)

The equibiaxial extensional viscosity [3,4] is defined by

ηB(ε̇) =
σ11 − σ33

ε̇
(6)
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and for a Newtonian fluid

ηB = 6η0 . (7)

Equibiaxial extension is kinematically the reverse of uniaxial extension, but
significantly different in terms of the effect of the flow in tending to align
long molecules or fibres. The idea that the functions ηT (ε̇) and ηB(ε̇) may be
regarded as the same function, for positive and negative values of the rate of
strain in the direction of the axis of symmetry, is not a particularly helpful one
since there is no reason at all for supposing that the values of this function over
the two ranges of values of its argument are in any way connected (except that
both show Newtonian behaviour in the limiting case of small rate of strain).
The only way one may connect the two functions is through a constitutive
equation.

Planar extension is sometimes referred to as “pure shear” but it must be
clearly understood that it is qualitatively different from simple shear, being
irrotational (relative to the usual fixed axes). A particular point of interest
for planar extension is that there are two extensional viscosities, the planar
extensional viscosity

ηp(ε̇) =
σ11 − σ33

ε̇
, (8)

which refers to the tensile stress required to stretch the material in the x1-
direction and a second extensional viscosity or “cross-viscosity”

η
(0)
2 (ε̇) =

σ22 − σ33

ε̇
, (9)

which refers to the tensile stress required to prevent deformation in the neutral
direction (the x2-direction). The theoretical relations for a Newtonian fluid,
with shear viscosity η0, are

ηp = 4η0 ; η
(0)
2 = 2η0 . (10)

The notation η
(0)
2 is a simple example of the notation [3,4,7–9] for general

extensional flows. If D11 = ε̇ is the largest (positive) rate of strain then we
may define m such that D22 = mε̇, with −0.5 ≤ m ≤ 1 and then

D11 = ε̇ ; D22 = mε̇ ; D33 = −(1 + m)ε̇ (11)

for an incompressible fluid. The parameter m, which we take to be indepen-
dent of time, describes the geometry of the extensional flow, with m = 1 for
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equibiaxial extension, m = 0 for planar extension, m = −1
2

for uniaxial ex-
tension and −1

2
≤ m ≤ 1 in general. The two extensional viscosities for this

general flow are

η
(m)
1 (ε̇) =

σ11 − σ33

ε̇
(12)

and

η
(m)
2 (ε̇) =

σ22 − σ33

ε̇
. (13)

These are equal to one another for equibiaxial extension and the second is
zero for uniaxial extension while for all other extensional flows we have the
two physical quantities which we may try to measure. As well as for the three
standard cases, m = −1

2
, m = 0 and m = 1, experiments have been carried out

by Demarmels and Meissner [10,11] for other extensional flows. For example,
m = +1

2
has been referred to as “ellipsoidal extension” [12] and may be

visualized as an unequal biaxial extension, with stretching at rates ε̇ and 1
2
ε̇

in two perpendicular directions.

4 Experimental methods and results

The basic experimental arrangements are discussed in detail in a variety of
books and papers dealing with polymer melts [13,14], polymer solutions [15],
contraction flows [16,17], elongational rheometers [18] and filament stretching
[19–21].

Here we omit most of the detail and catalogue them in a similar way to James
& Walters [15] and this author’s earlier paper [6]:

(1) The tensile test (Trouton’s method (A), [2, Section 2.1]) and the filament
stretching rheometer [13,14,22,15,18–21].

(2) Fibre spinning (Trouton’s method (C), [2, Section 2.1]) [13,14,22,15,18].
(3) Stagnation point flows (four-roll mill, opposed jets) [22,15,23,18,24].
(4) Converging and contraction flows [14,22,15–17].

The tensile test appears different when applied to polymer melts (and other
highly viscous materials) [13], where the aim is the extend a cylinder that
is as uniform as possible, and when applied to polymer solutions and other
mobile liquids [18,20], where measurements are made at the central plane
of symmetry and end effects cannot be ignored except at that plane. The
difference arises from the different relative magnitudes of forces (in particular

6



viscous and capillary forces) and is connected to the issue of controllability.
Stagnation point flows are important for realizing planar extension and this
has found application at the single-molecule level in elegant experiments on
visualizing the unravelling of DNA molecules (see the review by Shaqfeh [24]).

Kinematically the conventional spinning experiment is the same as flows such
as Fano flow, apart from different initial conditions and these, like the stagna-
tion point flows, have the major disadvantage that the flow is not materially
steady. This is a disadvantage if we want to talk about a material property,
but may in fact be an advantage if we want to investigate fluid rheology in
situations of practical relevance which are rarely materially steady. Both parts
of this remark apply even more strongly with reference to the use of converg-
ing flows to estimate extensional properties. It should also be noted that, as
can be seen by comparing the chapters by Binding [16] and Gibson [17] that
there is not yet universal agreement on how to infer extensional viscosity from
converging flow.

The variety of results that can be obtained is well illustrated by the various
“round robin” series of experiments referred to in the companion paper [2,
Section 3]. The “M1” series of experiments are reported in a special issue
of this journal [25] and summarized in the well-known Fig. 1 [15]. Use of
different techniques involving different flow histories gives values which, when
presented as “transient extensional viscosity” as a function of rate of strain,
are not consistent one with another, as Fig. 1 clearly shows. This presents,
qualitatively, results from ten sets of experiments on a graph of extensional
viscosity against rate of extensional strain. For all rates of strain between about
1 s−1 and 50 s−1, a range of values of extensional viscosity from different
experiments from about 20 to 10,000 Pa s is reported. The corresponding
Trouton ratios are between 6 and 3,000. There is a similar result for test fluid,
“A1” [26]. Walters [27, pp.20-21] comments on this situation in a critical but
positive way.

In their review, James & Walters [15] report on the success (to a limited
extent) of modelling the different flows in the series of techniques used for the
“M1” series of experiments, using the Oldroyd model [29–31] and the KBKZ
model [31,32] (see also [33]). This gets to the heart of the matter, that most
methods of estimating the extensional viscosity of mobile liquids rely on a
constitutive assumption in order to be interpreted correctly. It is important to
note, however, that use of a constitutive assumption does not in fact allow us
to talk sensibly about an extensional viscosity function for all of the variety of
extensional flow experiments that may be used. The experiments represented
in Fig. 1 (labeled by the names of the authors) are as follows:
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Fig. 1. The “M1” muddle (James & Walters [15])
.

Binding et al. spinline rheometer

Boger & Binnington contraction flow

Ferguson & Hudson spinline rheometer

James et al. converging flow rheometer

Jones et al. pendant drop (filament stretching)

Laun & Hingmann opposed jets

Matta & Tytus falling weight (filament stretching)

Nguyen et al. filament stretching

Oliver horizontal jet (spinning)

Schweizer et al. opposed jets (stagnation flow)
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Reference to the original paper shows that Binding et al. [28] also obtained
results from an open syphon (Fano flow) which were broadly similar to those
from the spinline rheometer and from contraction flows, which gave results off
the top of the diagram as plotted (apparent viscosity values from 104 up to
108 (Pa.s.) at strain rates of around 10 s−1.

The point is that, if we did discover the constitutive equation that perfectly
modelled the rheology of the fluid “M1”, or if we carried out the experiments
perfectly, we should get essentially the same picture as Fig. 1 if we try to
present the results of the experiments as graphs of “transient extensional vis-
cosity” against rate of strain. Each experiment is showing the response of the
fluid to a different extensional flow (with different flow history) and each is
correct.

5 Separation of elastic and viscous effects

Interest in separating elastic and viscous effects can be found more than a
hundred years ago. Trouton [34] addresses this issue and makes the suggestion
that elastic and viscous responses might be found together only in mixtures
where one component is viscous and one elastic. He uses an experiment on a
pure substance (sodium stearate) to show that the suggestion is false – the
pure substance shows a combination of elastic and viscous behaviour in the
same way as mixtures such as pitch and glass. We have noted in the companion
paper [2, Section 2] a number of other papers which address the same issue.

The idea of separating elastic and viscous effects is particularly interesting in
some early work of Vinogradov [35]. Vinogradov defined a “transient exten-
sional viscosity” as the ratio of extensional stress to rate of viscous strain,
i.e. the rate of increase of non-recoverable strain. Now when steady flow is
achieved, the recoverable strain becomes constant since removing the applied
stress at any time after steady flow is achieved will lead to the same recoil
(strain recovery). Hence the rate of strain and the rate of viscous strain are
equal in steady flow and there are no potentially confusing alternative defini-
tions for the “tensile viscosity” (which by definition is obtained from steady
flow).

There is the possibility of confusion in discussing transient extensional flow
[36, Section 2.2]. For example, Vinogradov’s graphs [35, Fig. 10] are sometimes
carelessly interpreted as evidence for stress overshoot (stress growing to a value
exceeding its steady state value) in the start-up of extension at constant rate
of strain. It is not the stress that overshoots; the maximum in the graph occurs
because the rate of viscous strain is less than its steady value while the elastic
strain is still building up. In order to clarify this we present the results of
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Fig. 2. “Transient extensional viscosity” functions: results of Vinogradov [35] (left-
-hand graphs) and Meissner [37] (right-hand graphs) presented as log(ηV ) and ηM

as functions of strain; based on [38]. (The legends in each figure give rates of strain,
s−1, for different experiments.)

Meissner [37] and Vinogradov [35] each plotted in the two ways used by the
two authors. The transient results are given as

(a) stress divided by rate of strain – this is Meissner’s “stressing viscosity”,
for which we use the symbol ηM

or as

(b) stress divided by rate of viscous strain – this is Vinogradov’s “longitudinal
viscosity”, for which we use the symbol ηV .

Plotting the results from both laboratories in both ways, Fig. 2, shows that
both are obtaining qualitatively similar results [38].

The two upper figures show log ηM plotted against strain for the Vinogradov
data (left) and the Meissner data (right, as published). The two lower figures
show ηV plotted against strain for the Vinogradov data (left, as published)
and the Meissner data (right). The magnitudes of the viscosities differ because
different polymers were used – the point is to note the qualitative similarity
between the results from the two laboratories when presented in the same
way. There is no evidence of overshoot for ηM from either set of data and

10



clear evidence of overshoot in the (less common) ηV for both sets of data.
More recently Hassager and colleagues [39] report definite overshoot in the
transient extensional viscosity (as commonly defined, ηM) for LDPE at high
rates of strain.

Note that we use strain as the abscissa in these graphs, as is usual for “tran-
sient extensional viscosity” from constant rate of strain experiments; it is per-
haps helpful if we regard the graphs as stress growth curves in which we plot
stress (scaled by dividing by rate of strain or rate of viscous strain) against
dimensionless time (scaled by multiplying by rate of strain, giving the total
strain). This helps to bring together results for different dates of strain. See
also the discussion below (Section 6.4) on strain and rate of strain dependence
of extensional viscosity.

There is no doubt that, as a qualitative way of thinking about material be-
haviour, the separation of viscous and elastic responses is helpful; however
there is also no doubt that linear superposition of elastic and viscous strain
is not in general possible. The non-linearity of the material responses with
which we are faced means that, for example, if we double the strain, we do
not necessarily double the elastic strain. This can be verified by considering
the result of calculations done for a simple model viscoelastic fluid [40] (a
Jeffreys fluid or Oldroyd fluid B). Elastic strain (recoverable strain, i.e. the
actual strain recovered when the applied stress is removed) is calculated for
uniaxial extension at constant rate of strain. The viscous strain is obtained
by subtracting the elastic strain from the total strain. There is clear evidence
of non-linearity in the fact that the proportion of the strain which is elastic
depends on the rate of strain.

An alternative to separating the strain into elastic (recoverable) and viscous
(non-recoverable) parts is similarly to separate the stress. This is associated
with the use of the filament stretching rheometer by McKinley [41] and Sridhar
[42,43] to study of stress relaxation at the end of an extensional flow exper-
iment. This gives an elastic response of the material, since when there is no
motion there is no viscous response. Of course it is not quite as simple as that
since there is no stress relaxation for a purely elastic material and so one is
clearly measuring a property of a viscoelastic material. Again the non-linearity
of the material means that the separation into elastic and viscous stresses is
not achievable in the way it can be done for a linear viscoelastic material.
The two ways of proceeding (in terms of strain or stress) correspond to linear
models with springs and dashpots in series or in parallel.

11



6 Some theoretical considerations

6.1 Inelastic fluids

Reiner [44], unlike others in the 1930s and 1940s, gave Trouton credit for
both the theoretical deduction and the experimental verification of the value
3 for the Trouton ratio. He pointed out that Trouton’s result is not correct
if compressibility of the fluid and bulk (or volume) viscosity are taken into
consideration. He went on to discuss the “generalized Newtonian liquid”, by
which he meant what we would now call the Reiner-Rivlin fluid in which stress
is the most general isotropic function of rate of strain alone,

σ = f1I + f2D + f3D
2 , (14)

in which f1, f2 and f3 are functions only of the invariants of D. The first
invariant, ID = tr(D), is zero for incompressible fluids and the third, IIID =
det(D), is zero for planar extension and for simple shear but non-zero for
uniaxial extension and other more general extensional flows. For the second
invariant we take here, for simplicity, IID = 1

2
tr(D2).

We may show that the Trouton ratio of 3 is not obtained for every incom-
pressible Reiner-Rivlin fluid, Eqn. (14) with fi(IID, IIID). In simple shear,
with shear rate κ̇ we have a variable viscosity

η =
1

2
f2

(
1

4
κ̇2, 0

)
, (15)

while in uniaxial extension

ηT =
3

2
f2

(
3

4
ε̇2,

1

4
ε̇3

)
+

3

4
ε̇ f3

(
3

4
ε̇2,

1

4
ε̇3

)
. (16)

Hence the Trouton ratio of 3, Eqn. (1), applies for any purely viscous fluid in
which stress is equal to rate of strain multiplied by a viscosity that depends
on the second invariant of the rate of strain. The comparison of extension and
shear is carried out for ε̇ = κ̇/

√
3. The Trouton ratio is not 3 either where the

viscosity function, f2, in Eqn. (14) depends on the third invariant of the rate
of strain or where the additional viscosity function, f3, is non-zero.

If we take a rather pragmatic approach and fit experimental data using, for
example, power-law expressions for viscosity in simple shear and uniaxial ex-
tension [17] this may be useful as a way of summarizing data and making
predictions for flows very similar to either simple shear or uniaxial extension.
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The use of superposition for other flows [22, Section 2.4.5] has been suggested,
but this approach will not give correct results for other extensional flows (e.g.
planar or equibiaxial). Probably if this approach is to be used in complex
flows, these should be axisymmetric flows such as converging or contraction
flows. The superposition is unlikely to find a formal mathematical justifica-
tion, given the non-linearity of the materials to which we want to apply it.
We find a discussion of these ideas and their computational application by
Debbaut and Crochet [45] which points out that such purely viscous models
are useless in planar flows (in connection with distinguishing shear and ex-
tensional behaviour). Their idea is to try and discover the consequences of
different Trouton ratios for the simplest model (i.e. the purely viscous fluid).

6.2 Viscoelastic fluids

Coleman and Noll [46] proved that for any “simple fluid” (in which the stress
can depend on the deformation history of the the material) in a simple exten-
sional flow (steady rectilinear extension) the equation,

σ = gI + hD + `D2 , (17)

holds, where g, h and ` are functions of the invariants of D. It is important to
distinguish clearly between this result, Eqn. (17), which applies to viscoelastic
fluids, but only for steady extensional flow, and Eqn. (14) which is a purely
viscous constitutive equation applying to any flow of a material described
by this constitutive equation. The result, Eqn. (17), is important, but often
of limited practical applicability and does not help us to make connections
between behaviour in shear and in extension unless we have a specific con-
stitutive equation. For example, for the upper convected Maxwell model with
relaxation time λ and viscosity η, we may deduce [5] that

h =
2η

1− 4λ2IID − 8λ2IIID

, (18)

` =
4ηλ

1− 4λ2IID − 8λ2IIID

. (19)

It is straightforward to deduce from this pair of equations, the expressions for
uniaxial, planar and equibiaxial extensional viscosities for the upper convected
Maxwell model.

However a further warning is necessary. Not only can we not use Eqn. (17) to
deduce behaviour in uniaxial extension from behaviour in simple shear, but we
cannot even deduce behaviour in other extensional flows from that in uniaxial
extension. This follows from the fact that each type of extensional flow gives a
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Fig. 3. Relation between the invariants of rate of strain for the standard extensional
flows.

specific relationship between the two invariants on which the functions h and
` depend. This may be visualized by saying that each of the three standard
extensional flows corresponds to a different path in a plot of IID against IIID,
Fig. 3.

Of course, if we have a constitutive equation whose parameters may all be
calculated from a set of measurements in any one or two flows, we may then
predict behaviour in all other flows. Such predictions will be useful tests of the
correctness of the constitutive equation, but there is no way of making such
predictions without a constitutive equation.

6.3 “Transient extensional viscosity”

We saw above (Section 4) that different extensional flow experiments give us
different functions for “transient extensional viscosity”. We might then note
that the results for similar types of experiment are grouped together, roughly
speaking, in Fig. 1. Unfortunately we can demonstrate that even in an idealized
situation this may not be the case.

We use a FENE-P dumb-bell model to simulate fibre spinning and presenting
the results as a graph of “transient extensional viscosity” against rate of strain.
Different values of the applied force and different positions along the spinline
give results throughout the shaded region shown in Fig. 4 [6]. The initial extra-
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Fig. 4. A range of apparent extensional viscosity behaviour in spinning [6, Fig
1b]. The dimensionless “Local stress/rate of strain” is scaled by the zero-shear
rate viscosity (sum of polymer and solvent contributions) and the dimensionless
rate of strain is scaled by the relaxation time. α is the Deborah number (based on
initial velocity and spinline length), β the dimensionless polymer contribution to the
viscosity, b the finite extensibility parameter and ν and π are the initial values of
extra-stress components. The boundaries of the shaded area correspond to distances
x along the spinline of 1% and 100% of the total spinline length.

stress values are not varied so this demonstration does not even include the
possible effects of different deformation histories prior to the spinline.

The conclusion from this set of calculations is that, for this model, at least
at low rates of strain (dimensionless rate of strain less than 1 for Fig. 4) it is
not possible to obtain a unique “transient extensional viscosity” as a function
of rate of strain from spinning experiments and the idea is not even a useful
approximation in this situation. For rates of strain above the dimensionless
value of 1 there may be some sense in defining what one might call a “spinning
viscosity” but this conclusion is, so far, only supported by the calculations
for one particular constitutive equation.

6.4 Strain or rate of strain dependence

One response to the difficulty in getting mutually consistent results from differ-
ent experiments is to suggest that the “transient extensional viscosity” should
be viewed as functions of strain rather than functions of rate of strain. This
has allowed a number of authors to present data that look more consistent.
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It may also seem to make sense when one considers that material proper-
ties are influenced by the microstructure (e.g. macromolecular stretching and
alignment) in a sample of material.

However strain in a liquid is somewhat arbitrary, since strain must be mea-
sured relative to a reference configuration and there is no unique reference
configuration for a liquid. Typically the strain in a fibre relative to its config-
uration at the die from which it is extruded is used. There are two obvious
ways in which this will be an inadequate measure of the microstructure of
the material. One is that the microstructure will, for many materials, tend
to revert to an isotropic relaxed state. The other is that both orientation and
stretching have upper limits while the measured strain does not. Both of these
will mean that the strain overestimates the microstructural changes. Measure-
ment of recoverable strain may be illuminating here but this will not help our
understanding as much as analysis using an appropriate constitutive equation.

Note that the use of strain as the abscissa in Fig. 2 above is not relaated to
this issue, as discussed above (Section 5).

7 Concluding remarks

One forgotten idea, from the heyday of continuum mechanics, is that of the
controllability of a flow. This seems to be a significant issue since none of
the flows we have discussed is controllable in the sense that the experimenter
prescribes the flow field in a definite way. In filament stretching one relies on
a balance of viscous, elastic and capillary forces to maintain the sample in a
(near) cylindrical shape. In spinning the history of the rate of strain is not
directly prescribed but depends on the fluid response to the flow (and thus
the shape of the fibre being spun may vary with flow rate). In the opposed jet
configuration, how much fluid stays for how long near the stagnation point is
dependent on the actual flow conditions and material properties. Similarly the
flow field in contraction flows is not prescribed a priori by the experimenter.
This leaves us at the mercy of the material, particularly when steady flow
is not achieved, and one consequence is that a correlation between transient
results for different types of experiment that we might obtain for one material
would not be likely to hold for any other material.

We reiterate the warning about extensional viscosity: it is fine in theory but is
a very dangerous idea in practice, specifically when it is applied when steady
flow has not been achieved. The convenience of referring to a “transient exten-
sional viscosity” is almost certainly an oversimplification that is liable to lead
to the false notion that one might obtain the same dependence on time for
different types of experiment. Even to confine the simplification to one type of
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experiment and to define a “spinning viscosity” may be more than is justified
by experimental observation and certainly can be shown to be wrong for some
theoretical models.

However, there is no doubt that transient extensional flows are what we have
in practical situations, so can we say something slightly more positive?

• One analogy offered by McKinley [47] is from thermodynamics: the differ-
ence between path-independent functions (like internal energy or steady-
state elongational viscosity) and path-dependent ones (such as work,
heat, transient elongational viscosities). Defining path-dependent func-
tions such as work and heat has helped us understand thermodynamics
and indeed has been vital to its development.

• Another analogy that may help is with quantities such as the Melt Flow
Index, obtained in standardized technical tests. A “transient extensional
viscosity”, carefully defined for a specific experiment, must surely be at
least as useful as the MFI in comparative assessment of fluid properties as
far as they are relevant to real flows with extensional deformations taking
place for limited times. The analogy with MFI may be better if applied to
averaged quantities (such as a “spinning viscosity” based on draw ratio,
spinline length, flow rate and applied force but ignoring details of the
fibre profile, details which we would need to get local values of stress and
rate of strain). The Rheotens [14] equipment offers a technical test using
fibre spinning in a prescribed way to obtain a “melt strength” and this
is perhaps more appropriate than simplified deductions of some sort of
extensional viscosity from spinning.

• In spite of the reservations expressed above (Section 6.4), a measure of
strain may be the best readily accessible measure of stretching and even
orientation at the microstructural level. Hence, provided the conditions
of the experiment are clearly described, it seems sensible to accept that
the use of a “transient extensional viscosity” expressed as a function of
strain will tell us something about material rheology in extension.

• Use such a function with care – it is a simplification and sometimes
will be an over-simplification. The point is well put by Pearson [48]:

“My main message is as simple as yours: if you want to predict flow in
all circumstances, you need a REoS [a rheological equation of state or
constitutive equation], nothing less. Rheometric functions can be useful
in classification and categorisation, involving qualitative statements,
and can provide engineering approximations in particular flow fields,
but they cannot be inserted in CFD packages.”

The author is indebted to a number of friends and colleagues. His interest in
extensional flow can be traced back over 40 years to post-doctoral work with
Anthony Pearson in 1964 and a sabbatical spent with Morton Denn at the
University of Delaware in 1974. The late Georgii Vinogradov supplied data
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and encouragement on more than one occasion. Morton Denn, David James,
Gareth McKinley, Anthony Pearson, Roger Tanner and Ken Walters made
comments on a draft of this paper, though it is certain that these would not
all agree with all that has been written here.
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